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Mental models use common neural spatial
structure for spatial and abstract content
Katherine L. Alfred 1*, Andrew C. Connolly1, Joshua S. Cetron2 & David J.M. Kraemer 3

Mental models provide a cognitive framework allowing for spatially organizing information

while reasoning about the world. However, transitive reasoning studies often rely on per-

ception of stimuli that contain visible spatial features, allowing the possibility that associated

neural representations are specific to inherently spatial content. Here, we test the hypothesis

that neural representations of mental models generated through transitive reasoning rely on a

frontoparietal network irrespective of the spatial nature of the stimulus content. Content

within three models ranges from expressly visuospatial to abstract. All mental models par-

ticipants generated were based on inferred relationships never directly observed. Here, using

multivariate representational similarity analysis, we show that patterns representative of

mental models were revealed in both superior parietal lobule and anterior prefrontal cortex

and converged across stimulus types. These results support the conclusion that, independent

of content, transitive reasoning using mental models relies on neural mechanisms associated

with spatial cognition.
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Mental models, cognitive architectures containing rela-
tional properties that reflect the structure of problem or
situation, are a critical component of reasoning1. These

representations can be built up through experience or they can be
inferred from sparse information of a situation. Mental models
need to represent a diverse body of information, but it is not
parsimonious to have distinct models for every type of content.
Instead, it is likely there is a fractionate system that includes a
common framework utilized by all problem types, as well as
recruitment of content-specific support systems1–5.

Studies of the neural representation of relational reasoning
have frequently tested the prediction that relational information
is presented in a spatial way, through the creation of a mental
map or model. The SPL and aPFC (often rostrolateral prefrontal
cortex; RLPFC), have been found to underly relational and
transitive reasoning6–8. Transitive reasoning tasks typically use
spatial content, making it difficult to draw conclusions about
whether SPL activity reflects processing of spatial task content, or
whether SPL activity is reflective of an inferred relational space
representing conceptual distance between items, like a mental
model9. It is possible that SPL involvement is due to the use of
spatial content in tasks (e.g., height) and transitive reasoning
tasks with abstract content would result in reduced SPL invol-
vement. Alternatively, transitive reasoning could be a spatial
process regardless of content, and individuals construct a spatial
mental model to organize information.

It is important to note the difference between “content” versus
“structure” in the context of transitive reasoning problems.
“Content” in this article refers to the domain of the specific
materials (e.g., “taller than”). A problem might not have spatial
content if an individual is reasoning about how expensive one
painting is compared to another or ordering a set of objects with
an arbitrary ranking dimension. This use of spatial content is
contrasted with the idea of the spatial “structure” of a mental
model, i.e., generating a mental model with meaningful spatial
structure, regardless of the items. For example, each of the types
of content described above, whether spatial or non-spatial in
content, could be organized spatially from “most” on the left to
“least” on the right.

In addition to confounding spatial content and structure, past
research on transitive reasoning tends to use tasks in which
participants can directly perceive spatial stimuli while reasoning.
Whereas this approach is useful for studying the neural basis of
the reasoning process, it is sub-optimal for identifying neural
patterns that represent inferred mental models unconfounded by
perceptual information. Instead, neural patterns representing
inferred mental models can be better examined using repre-
sentational similarity analysis (RSA) to directly measure the
informational content of the reasoning problem, even when the
participant is no longer viewing stimuli demonstrating the tran-
sitive relationship10.

Although past research has clearly implicated frontoparietal
activity in spatial representations of mental models, these studies
were designed to examine univariate patterns of brain activity and
were only able to speak to relative activity levels in different
regions, using inherently spatial tasks. In order to determine the
structure of the activity in past work, Alfred, Kraemer and
Connolly10 used representational similarity analysis to compare
the patterns of activity to the predicted mental model that would
be created by a given reasoning problem. Activity in the SPL, IPS
and the right aPFC correlated with the predicted pattern of
activity based on the relative heights of “people” the participants
were reasoning about. These results support the conclusion that a
parieto-frontal network underlies the maintenance and use of
mental models created through inferential reasoning, though this
is partially confounded with the spatial task.

Though the spatial content and proposed spatial structure are
confounded in previous studies, we hypothesize that there is a
common spatial representation for mental models created
through transitive reasoning. To test this hypothesis, in this study
we expanded the content types used in the transitive reasoning
problems to separate spatial content from the hypothesized spa-
tial representation of mental models. We also aimed to use a task
similar in design to our previous task10, in that the relationships
between stimuli should not be displayed at any point—they need
to be deduced. As in the previous study, only adjacent pairs of
stimuli were ever presented. Participants needed to use transitive
reasoning to infer distal relationships needed to construct the full
structure of the accurate mental model. Moreover, the informa-
tion required to infer the correct order of stimuli in the linear
space was not present during the task, but rather this information
was learned previously and then queried for the purposes of
drawing a conclusion during the task.

To accomplish these aims, we modified our previous paradigm
to include a range of stimuli that vary in their spatial content.
Participants constructed mental models with information from
three content dimensions: an inherently spatial content domain:
the height of a person (e.g., Dylan is taller than Kevin), a content
domain easily mappable to estimated numerical magnitude: value
of an unfamiliar abstract painting (e.g., a Distap is more expen-
sive than a Tobir), and an abstract content dimension based on a
nonsense descriptor (“vilchiness”) randomly associated with non-
meaningful line drawings (e.g., Hectis is more vilchy than Storog).

We hypothesized there is a shared frontoparietal network that
supports the structure of mental models, as well as additional
content-specific regions recruited based on the content of that
problem. Results from an average RSA map across the three
content-type z-maps and a conjunction analysis support this
hypothesis. We found the only brain regions to reliably represent
the structure of the mental models across content type were the
right intraparietal sulcus and the left inferior frontal gyrus, indi-
cating a frontoparietal network of brain regions support mental
models across content types for transitive reasoning problems.

Results
Behavioral performance. Participants completed the Hierarchy
Recall task in both of two half-hour training sessions and the fMRI
session for each content type (24–48 h gap between first and
second training sessions, and 24–48 h gap between second training
session and fMRI session). For each of the three content types
(Height, Price, and Abstract), a Spearman correlation was calcu-
lated to determine the correspondence accuracy between each
participant’s generated ranked list and the correct ranked list of
the items in that content type. Because the traditional format of
transitive reasoning tasks takes the form of “A is more than B, B is
more than C, Therefore, A is more than C”, participants were only
exposed to adjacent pairs during training. The transitive reasoning
comes from inferring the relationship between A and C across
their shared partner, B. This aspect of transitive inference can then
be tested to determine if participants reasoned correctly by
querying participants for both the full ordered list (hierarchy) as
well as asking about how specific pairs of items relate to each other
(forced choice pairs, below). Participants were not given any
feedback during any training session about if their inferred
ordering was correct. In the first session, participants were aver-
aging a correlation of rs(18)= 0.96 with the actual order for
Height, rs(18)= 0.94 with the actual order for Price, and rs(18)=
0.79 with the actual order for Abstract. At the end of the second
training session, participants had an average correlation of rs
(18)= 0.99 for Height, rs(18)= 0.98 for Price, and rs(18)= 0.92
for Abstract. By the end of the scanner session, participants had an
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average correlation of rs(18)= 1 for Height, rs(18)= 0.96 for
Price, and rs(18)= 0.91 for Abstract (Fig. 1a). This result indicates
that by the time that neural data was collected, participants had
learned the hierarchy to ceiling. During the debriefing ques-
tionnaire after the fMRI session, participants were asked how they
were thinking about the people, paintings, and objects and how
each of those items related to all the other items in the space. The
overwhelming majority (all except two) described using an
explicitly spatial strategy, such as putting the items in the line,
imagining them on a timeline, or creating a hierarchy. Of the two
participants who did not use an explicitly spatial strategy, one of
the participants reported numbering each of the items, and the
other participant created a mental list using the first letter from
each of the words. These results indicate that our transitive rea-
soning problems seem to inherently encourage the use of spatial
structures to organize information.

Participants completed the Paired Forced Choice task in both
training sessions and the fMRI session for each content type.
Similar to the behavioral results from the Hierarchy Recall task,
participants performed well on the Paired Forced Choice task.
Participants completed this task during each of the three sessions
for each of the three content types. Within each content type,
participants were shown every possible combination of two items
(including non-consecutively ranked items that were never
presented together during learning). Participants were then asked
to judge which of the two items was taller/more expensive/more
vilchy. During the first session, participants had an average
accuracy of 94.8% for Height, 95% for Price, and 85% for
Abstract. In the second session, participants had an average
accuracy of 97.6% for Height, 98.6% for Price, and 95.2% for
Abstract. By the end of the scanner session, participants had an
average accuracy of 98.1% for Height, 97.6% for Price, and 97.1%
for Abstract (Fig. 1b; Supplementary Data 1).

Neural representational similarity analysis (RSA). A surface-
based searchlight RSA11 was conducted on the group level that

reflected the Pearson correlation between local neural representa-
tional structure and a target similarity structure for each content
condition (Fig. 2a). The RSA resulted in a correlation for each
surface node for how closely the pattern of neural activity mirrored
the pattern of the mental model, for each of the three content types.
To correct for multiple comparisons, we conducted a 10,000-
iteration permutation test. We z-scored the correlation with the a
priori model at each node to this permuted distribution to find how
likely it is that our results occurred by chance (Fig. 2b). The results
of the permuted z-maps (p < .01, corrected) for each of the content
types can be seen in Fig. 3. We further corrected the permuted z-
maps at the cluster level to retain only spatially significant con-
tiguous clusters (p < .05; see Method section for details).

For the Height content condition, we found p < .01 permutation-
corrected probability for the RSA correlations in the predicted right
IPS3,10,12 as well as the right precuneus10. We additionally found a
region of the right IFG10, which may be involved in the retrieval of
face-related information13–15. For the Price content condition, we
found p < .01 permutation-corrected probability for the RSA
correlations in the predicted right parietal lobule (superior and
inferior parietal lobules)3,10,12 as well as an inferior portion of the
bilateral precuneus (as found in Alfred et al. 10). For the Abstract
content condition, we found p < .01 permutation-corrected prob-
ability for the RSA correlations as predicted in the right IPS3,10,12 as
well as the left IPS and the broader left SPL. Full results can be seen
in Fig. 3. The left IPS has been found to play a similar role to the
right IPS, though it typically is associated with symbolic
mathematical processing as opposed to magnitude estimations16,17.
It is possible that since the abstract content dimension was made up
of novel abstract line drawings with nonword labels, there was no
existing system for retrieval of these items (such as with the right
IFG and face-retrieval), and participants were representing the
items as symbols. It is important to note that while the content in
the Height condition is more spatial than the Price condition, which
is more spatial than the Abstract condition, we did not see any
significant differences in the average Z-values in the right IPS
between conditions, indicating that the right IPS had a similar
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Fig. 1 Behavioral results by task and session by content type. All error bars display standard error (SE). a Accuracy for the Paired Forced Choice task by
session. By the fMRI session, all participants had learned the hierarchies for each content type to criterion. b Spearman’s rho for the hierarchy recall by
session. Though the participant-generated rankings for the Abstract content type did not correlate with the correct rankings as well as Height or Price,
participants had learned the spaces well enough that they were not consistently making errors.
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strength of representational similarity with the model in each of the
conditions, regardless of problem content. This supports our
hypothesis that the patterns of activity in the right IPS better
represent information that is common between all the problem
content types.

In short- the right IPS seems to be representing information
about the common structure of the mental model constructed
through transitive reasoning rather than the content of the
specific transitive reasoning problems. All the problems used in

this study were transitive reasoning problems, which have a very
specific organizational structure. Consistent with our hypotheses,
there is a great deal of overlap in the neural localization of mental
models across content types. Further, participants overwhel-
mingly reported using a spatial strategy to organize the
information in the transitive reasoning problems, such as
organizing the information on a line. Because nearly all
participants used a spatial strategy for the transitive reasoning
problems in all content types, we would predict to see similar
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Fig. 2 a Dissimilarity matrices for each condition. Each of the items within each content type was modeled to be 1 rank distance from its neighboring
objects. The diagonal for each of the matrices is 0 and was excluded from analyses. b Method of correcting for multiple comparisons. For each content
type, the dissimilarity matrix was permuted 10,000 times to create a distribution based on possible outcomes for the data. For each surface node, the
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Fig. 3 Permutation-corrected cortical surface maps for each of the representational similarity analyses by content type. The z-scored correlations are
indicative of correlation strength and reliability above the level of noise present in this dataset (permutation-corrected correlations, see Fig. 2B for further
elaboration).
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broad patterns of activity for all transitive reasoning problems
unless the content itself was the primary determiner of patterns of
neural activity.

To examine neural representations of mental model structure
independent of content type, we identified regions present across
all individual content RSA maps. After eliminating values that
could have been boosted by chance through the averaging (see
Method for details), we averaged the permutation corrected z-
maps for all three content types. We identified significant clusters
in the averaged z-map using AFNI’s surface-based cluster
simulation to determine minimum significant cluster area
(p < .05; 120 mm2). In the clusterized average z-map, we found
a significant cluster in the predicted right IPS, as well as regions of
prefrontal cortex (see Fig. 4 for whole brain map; see Table 1 for
cluster list).

Because the average z-map reveals regions that significantly
correlate with the content-specific rank models combined across
content types, regions in this map are associated with mental
models of a similar structure, rather than within a specific content
type. It is important to note that despite the fact that the content
varied from spatial to non-spatial, nearly all participants reported
using spatial strategies to organize the structure of the informa-
tion from these problems. Nonetheless, this analysis revealed a

significant cluster in the right IPS, in a region specifically
associated with estimations of spatial magnitude in previous
research18,19. To support our assertion that the involvement of
the right IPS represents spatial information specifically, we used
the association map from NeuroSynth with the “spatial” keyword
(NeuroSynth.org20).

This map indicates areas that are selectively active for spatial
information as compared to all other terms in the database
(created through meta-analysis of 1157 studies that include
“spatial” as compared to the remaining 13,214 studies, thre-
sholded at FDR corrected .01). This approach is an objective,
external, data-driven method to generate networks based on
keywords in which activity across previous studies has been
associated more with the term “spatial” than with other terms in
the database. The spatial association map was binarized and the
clusterized average z-map of the permutation-corrected and
cluster-corrected RSA was overlaid on top of the spatial
association map. The region in the right IPS is the only cluster
that falls within the spatial association map, indicating that the
right IPS is used for creating a spatial mental model of rank order
created through transitive reasoning problems, regardless of the
content type used in the transitive reasoning problems (Fig. 4).
Whereas a specific location in the rostrolateral prefrontal cortex
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Conjunction Color Key

Height + Price

Price + Abstract

Abstract + Height
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Left aPFC Left Inferior
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Fig. 4 Common brain regions representing mental models across content types. For all content-specific z-maps (Fig. 3), values below the significance
threshold were removed. The three content-specific z-maps were then averaged (including 0 values for regions that did not reach significance in
permutation correcting) to create the content-average map representing the common mental model structure across content types. Therefore, the z-values
in this figure are averages of the permutation-corrected z-values from the content-specific maps (and as a result this scale is lower than that of Fig. 3). The
average z-map was then cluster thresholded using a bootstrapped cluster significance level of p < .05, corrected (minimum area= 120mm2), so only
values within significant clusters are displayed. The full cluster list can be seen in Table 1. Inserts display the conjunction map for each of the significant
clusters. Both the right IPS cluster and the left inferior frontal cortex show overlap between all three content types. This average map was overlaid on top of
term-based automated meta-analysis generated using NeuroSynth (“spatial” association map). The indicated right IPS cluster is the only cluster from the
previous analysis that overlaps with the NeuroSynth “spatial” association map. See note in Table 1 for explanation of average z-value calculation.

Table 1 Peak coordinates (MNI) and anatomical regions for average rank RSA.

Anatomical Region X Y Z Peak Z Mean Z Content Overlap

Intraparietal Sulcus (R) 40 −28 38 2.02 1.39 Height, Price, Abstract
Inferior Frontal Cortex (L) −40 22 28 2.06 1.43 Height, Price, Abstract
Anterior Prefrontal Cortex (L) −8 64 0 1.93 1.49 Height, Abstract

Note: Individual content RSA maps were thresholded at the node level based on our noise threshold calculations prior to averaging (z > 1.65). Cluster spatial extent thresholds were bootstrapped using
AFNI’s SurfClust function. Clusters have a minimum area of 120mm2, have a minimum distance of 3 mm between nodes in a cluster, and are significant, p < .05, corrected. The z-values reported here and
in Fig. 4 are averages from all 3 content RSA maps which include zeros for any individual content map that has a sub-threshold value at that node
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(RLPFC) is frequently reported in studies of transitive reason-
ing6–8, we did not find that same region of the RLPFC to be
significantly correlated with the average RSA for rank across
content types. Instead, we found a cluster in the left inferior
frontal cortex (IFC) that responded to mental model structure
across content types. This region has been previously reported in
reasoning research as a region that is active during correct
analogy trials compared to baseline8. The cluster in the left IFC is
also seen in our previous study using only the height-based
transitive reasoning task10. We further identified a cluster in left
anterior prefrontal cortex (aPFC) that is anterior and ventral to
regions identified in the aforementioned studies demonstrating
RLPFC involvement in transitive reasoning. Notably, these
previous studies used tasks that differed from the current task
in that participants were drawing new transitive inferences during
the collection of neural data rather than querying a mental model
previously created through transitive reasoning. In contrast, the
left IFC and aPFC regions implicated by the current task relate to
the process of querying a mental model previously created
through transitive reasoning processes.

Finally, to determine which regions in the average RSA analysis
represented similar mental models in each of the three content
types, we calculated a conjunction map. This conjunction map
highlights regions where either two or three content types had
significant values after the initial permutation-based thresholding
step. As with the average RSA, following a node-level threshold-
ing step (z > 1.65), we applied a bootstrapped spatial cluster
correction to the conjunction map to only preserve clusters
significant at p < .05, corrected. Only the clusters in the right IPS
and the left IFC were both significantly large and contained
overlap between all three content types. The extent of the three-
way overlap in right IPS is limited, however, the area surrounding
that overlap is made up of different two-content overlap sections,
indicating that adjacent and partially-overlapping regions of this
region are coding these spatial mental models. Similarly, the
cluster in the left IFC shows sparse three-way overlap, but it is
surrounded by Height-Price and Height-Abstract overlapping
regions, indicating the left IFC encodes the structure of the
mental model across all three content types in the same region, if
not precisely the same voxels within that region. The right IPS is
the only region that overlaps with the NeuroSynth “spatial” meta-
analytic map, consistent with the hypothesis that this region is
involved in encoding the spatial structure of mental models
across all three content types. The only other region to emerge in
both the conjunction analysis and the average RSA analysis is the
aPFC region that shows overlap between the Height and Abstract
conditions, but not Price. No other regions survived thresholding
for either the conjunction analysis or the average RSA analysis.

Discussion
These results reveal that the structure of the mental model itself
utilizes spatial machinery to encode and represent structural
information about relational relationships, regardless of the
content of the reasoning problem. Further, rather than relying on
univariate contrasts, these findings are the result of directly
modeling the patterns of neural activity using the representational
similarity of the structure of the mental model itself, as it would
be created through transitive reasoning, across both spatial and
non-spatial content. Broadly, these results support the role of
superior parietal cortex, and to a lesser extent anterior prefrontal
cortex, in the creation and maintenance of mental models created
through transitive reasoning across a variety of content types. An
average z-map for rank (averaged across content condition)
correlated with patterns of neural activity in the right IPS and
anterior prefrontal cortex (aPFC). A conjunction analysis further

narrowed down these results to indicate that the right IPS showed
significant levels of overlap between content types, including
three-way overlap between all content types. Finally, the right IPS
also overlaps with the NeuroSynth meta-analytic “spatial” map,
indicating that the region of the right IPS that encodes all three
content types has also been demonstrated by prior work to be a
spatial region. This result indicates that the IPS supports the
spatial representation of mental models created through transitive
reasoning even when the content is not spatial. Not only is the
mental model represented spatially when the content is spatial,
but the same representation is created when the content is
abstract.

These findings build on results from prior studies12,21 that both
concrete and abstract spatial information are represented the
same way in the parietal cortex. The involvement of the aPFC
supports previous work that shows prefrontal cortex involvement
in the integration of relational reasoning22,23. Both the SPL and
aPFC were implicated in the creation of mental models in tran-
sitive reasoning tasks using spatial content6–8,10, and the invol-
vement of those regions across a spectrum of spatial to non-
spatial content indicates that the involvement of the IPS is due to
the spatial structure of the representational space and not the
spatial content of the problems. Further, within each content
type, the models of each problem space correlated with additional
regions in the superior parietal cortex, as well as content-specific
support regions based on content type. This result is in line with a
system of reasoning that both has shared processing for different
problems, but also recruits different content-specific regions,
depending on the specific problem content2,3,23.

This study expands on a framework for relational reasoning put
forth by Wendelken and colleagues23 focusing on the role of the
aPFC and SPL. Whereas this framework is broadly supported by
the current body of research, there is some evidence the SPL may
play a greater role than simply encoding individual relationships.
The result from this study indicating that only the right IPS shows
significant overlap between all three content types while the aPFC
fails to reach significance indicates that the role of the SPL might
be larger than originally posited. Specifically, the SPL may be
critical for generating transitive inference itself. In one study of
patients with aPFC or SPL lesions performing transitive reasoning
tasks, only patients with SPL lesions showed significant impair-
ment compared to aPFC lesioned patients and healthy controls7.
Interpreted under the framework proposed by Wendelken and
colleagues23, lesions to either the SPL or aPFC should both have
produced significant impairment to transitive reasoning. Because
patients with aPFC lesions were not significantly impaired during
transitive reasoning tasks, the SPL seems to be playing a critical
role in both individual relationship encoding as well as generating
inferences based on transitive relationships. More recent research
using representational similarity analysis to probe the repre-
sentation of mental models has also supported the involvement of
the SPL while drawing transitive inferences10. Therefore, it seems
plausible that the SPL is active in supporting transitive reasoning
at the point of drawing inferences.

Most previous studies of transitive reasoning involve visuos-
patial stimuli, either through direct comparisons of magnitudes or
using spatially grounded stimuli (such as “taller than” or “to the
left of”). These methods pose a potential problem for inter-
pretation of selectively spatial areas such as regions of the IPS.
Are those spatial regions responding to the presence of spatial
content in the problem, or to the accessing of a spatially orga-
nized mental model? Though our previous work10 indicated that
the patterns of neural activity in the right IPS highly correlates
with a model that directly represents the mental model of the
problem space of a transitive reasoning problem, those results
were weakened by using the inherently spatial height content
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domain. These findings are able to clarify that though transitive
reasoning about content types with varying degrees of spatiali-
zeability results in information about the mental model being
represented in different regions of the superior parietal cortex, a
region in the right IPS showed patterns of activity that were
consistent across transitive reasoning problems, regardless of
content type. Further, the region of the right IPS that was found
to have patterns of activity that corresponded with the structure
of the problem space regardless of if the content was spatial was
found to be contained within the NeuroSynth “spatial” associa-
tion map. This pattern of activity indicates that the structure of
the mental model for the transitive reasoning problems across
content types is spatial even when the content is not spatial.

It is important to note that while this study has focused on the
frontoparietal representations if mental models, significant prior
work has focused on the role of hippocampal and entorhinal
cortex24–32. Although the involvement of the hippocampus in the
support of mental maps of relational information is a critical
finding (and has often been demonstrated using abstract non-
spatial relationships), there is evidence that the hippocampus is
not the sole region responsible for this process. Some
studies9,23,31,33,34 have identified the involvement of SPL and
RLPFC alongside the hippocampus with regards to the encoding
of mental models created through transitive reasoning. Specifi-
cally, in Wendelken et al.23 the authors noted that the hippo-
campus was specifically implicated in the process of drawing a
new transitive inference across learned previously-associated
pairs. Rather than study new transitive inference, in this study, we
were primarily interested in testing the prediction of mental
model theory that models are separately created and queried1.
Although characterized as querying a mental model, this stage of
the reasoning process does still involve reasoning during the
reconstruction of the hierarchy from the model. Because this
study was not collecting neural data at the time of the initial
transitive inference, based on the finding fromWendelken et al.23,
we chose to focus on the role of the parietal and prefrontal cortex.

While it is meaningful to show the role of the superior parietal
cortex in the creation and support of mental models created
through transitive reasoning tasks, this finding has some limita-
tions. Notably, transitive reasoning is a special kind of reasoning
that differs both from other types of deductive reasoning (such as
set inclusion problems), and also from inductive reasoning. A
large body of work has shown that transitive reasoning is likely
supported by mental models, which is not necessarily the case for
all other types of reasoning. Because transitive reasoning is a form
of reasoning that specifically compares relative magnitudes of
items, it is especially likely that this form of reasoning utilizes the
same mechanisms that allow individuals to compare directly
perceived differences in magnitude. Parkinson and colleagues12

identified and tested this link and found that literal spatial dis-
tance (near and far from an individual), temporal distance (near
and far in time from the present moment), and social distance
(close friend or stranger to an individual) shared common spatial
magnitude processing in the right inferior parietal lobule.

This finding of shared processing for literal and abstract dis-
tance is in line with theories put forth by Dehaene and Cohen35

that proposed that complex human cognition, such as the pro-
cesses that support mathematics and reasoning, are supported by
existing neural circuits that performed the most similar functions
to the new complex cognitive functions. Because mental models
tend to be represented spatially, including as mental maps of a
given problem space, the spatial structure of these models seems
to frequently be represented in neural regions that encode literal
spatial maps or spatial distance, such as the hippocampal place
maps24–32 and the right parietal cortex, especially the right
IPS7,9,10,12,31,34.

Although there were a variety of initial content types in each of
the transitive reasoning problems, representations of the content
of those problems converged in a region that represented the
common information between the content types—a spatial
representation of relative distances12,21. This hypothesis is further
supported by participant self-report during debriefing. Regardless
of the type of content used in the transitive reasoning problems,
participants stated that they used a spatial strategy to organize the
information in the problems, i.e., nearly all utilized a spatial
mental model.

Methods
Participants. For this study, we recruited nineteen undergraduate and graduate
student participants (15 female, Mage= 19.81) who were right-handed, fluent in
English, and with normal or corrected to normal vision. No participants had a
history of neurological or psychiatric disorders. Informed consent from each
participant was obtained prior to the start of the experiment. Participants were
compensated with their choice of cash or course credit for their participation, in
accordance with the guidelines set forth by Dartmouth Committee for the Pro-
tection of Human Subjects (CPHS), and this study was conducted with approval
from CPHS 23887.

Transitive Reasoning Task
Learning. Participants were trained on transitive reasoning problems featuring
three types of content (Fig. 5): relative height of fictitious “people”, relative price of
fictitious paintings, and an abstract dimension of the relative “vilchiness” of
abstract line drawings. Each “person” exemplar in the Height condition consisted
of a picture--each a male face with a closed mouth neutral expression, (NimStim36)
paired with a name taken from a normed list of the most popular two-syllable
names from the 1990s (https://www.ssa.gov). Paintings were abstract paintings
created by František Kupka paired with a fake name from the list of pronounceable
nonwords with no English roots37. The objects in the abstract condition were
abstract fully-enclosed black and white line drawings paired with a fake name from
the same list of pronounceable nonwords37. Participants were presented with
statements that took the form, “[Item A] is [more/less] [tall/expensive/vilchy] than
[Item B]” (Fig. 5). The statements were counterbalanced so that participants were
asked to either identify exemplars associated with more than or less than spatial
relationships. For example, participants saw that “Distap is more expensive than
Tobir” as well as “Matthew is less tall than William” (Fig. 5). Participants were told
to use these statements to try to determine the relative height, price, or vilchiness of
each item in the group. Because this was a transitive reasoning task, participants
were only presented with adjacent pairs of items, and had to reason about the
entire hierarchy through their knowledge of other relationships. In order to deduce
that A is more expensive than C, the participant must reason that A is more
expensive than B, and B is more expensive than C, so A is more expensive than C.
Participants were shown each pairwise relationship in each direction (within each
of the 3 content types, there were 4 possible direct connections between 5 exem-
plars, for a total of 8 possible statements) a total of 4 times per reasoning task
training session.

Hierarchy Probe. For five seconds, participants saw a screen instructing them to
think about where the following item fit into its larger hierarchy (Fig. 5). The
lineup then disappeared and the name and picture of one of the items appeared for
5 sec while the participant thought about the relative height, price, or vilchiness of
the currently viewed item. The name and picture then disappeared, and the par-
ticipants saw the following set of three statements in random order, using height as
an example, “Average” “More Tall” “Less Tall” with the numbers 1, 2, and 3 below
the statements. Participants were instructed to press the number that corresponded
with the statement that best matched the height of the item they had just seen.
There were two runs per content type, and each item was presented twice per run
(i.e., each item was presented 4 times total) for a total of 10 trials per run and 20
trials per content type.

Forced Choice Pairs. In this portion of the task, participants were instructed that
they would see two of the items they learned about presented together (Fig. 5).
Unlike during the transitive reasoning task described above, each possible pairwise
comparison of exemplars within each content type appeared during this task.
Participants pressed one button to indicate that the exemplar on the left was more
tall/expensive/vilchy, and another button to indicate that exemplar on the right was
more tall/expensive/vilchy. The presentation of particular exemplars on left or right
side of screen was counterbalanced. Each content type had 5 total items resulting in
10 unique pairings per content type. The data for the forced choice pairs were
collected from one run each per content type.

Hierarchy Reconstruction. Participants were given a sheet of papers with three
sections, each with a blank 1–5 numbered list and instructed to write the names of
each of the items for each content type in order from most to least (Fig. 5). To aid
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participants that were largely relying on pictures and not names, an alphabetized
(not rank ordered) guide of picture/name mappings was provided for participants
to reference while organizing the exact ordering.

Procedure
Experiment Overview. Figure 6 shows the overview of the experimental timeline,
including both training sessions and the fMRI session. Each of the training sessions
was a half hour in length. First, participants completed the transitive reasoning

task, and then completed the hierarchy probe, next they completed the pairwise
comparisons, and lastly filled out the hierarchy on paper. The training sessions
were required to be at least 24 h apart and no more than 48 h apart. The second
training session had to be more than 24 h and less than 48 h before the scanning
session.

Training Sessions. Each participant underwent two behavioral training sessions on
two separate days to be familiarized with the task and to reason about the relative
position of items in the hierarchies that they were reasoning about. First,
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Fig. 5 Overview of tasks and materials. Each task (Learning, Hierarchy Probe, Forced Choice Pairs, and Hierarchy Reconstruction) was present in each of
the three content conditions. The red area shows the version of the task with the Height condition, the green area shows the version for the Price condition,
and the blue area shows the version for the Abstract condition.
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3.  __________
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Fig. 6 Experimental session timeline. All participants underwent two half-hour training sessions where they were trained on the order of the items in each
content domain. Within each content type block in each training session, participants completed a set of tasks in a fixed order to learn the hierarchy and
practice the tasks they would need to do in the fMRI session. In each of the blocks in the Training Sessions, participants first observed pairwise
comparisons of only adjacent pairs for each content type (e.g., comparing paintings 1 and 2, and not paintings 1 and 4). Participants then completed the
Hierarchy Probe, Forced Choice Pairs, and the Hierarchy Recall before proceeding to the next content block. The ordering of these tasks within each
content block in the training sessions was always in this set order. Both of the training sessions were 24–48 h apart and the second training session was
24–48 h before the fMRI session. In the fMRI session, participants completed a short review of the content presented in the Learning portion of the training
sessions while anatomical scans were running at the beginning. In each content block, participants completed the Hierarchy Probe and Forced Choice Pairs
tasks. Out of the scanner, participants completed the Hierarchy Recall for all content types and the Post Experimental Questionnaire.
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participants were trained on adjacent items in the hierarchy for each of the height,
price, and vilchy content domains. With price for example, participants were
shown that one painting is more expensive or less expensive than another painting,
and were reminded that “more expensive than” means “immediately more
expensive than” and not just more expensive broadly than that other painting to
indicate that there is a specific price order that can be deduced. Participants were
instructed to pay close attention to how expensive each painting is relative to the
rest of the group. Over the course of the task, each item was presented with both
the exemplar more expensive than and less expensive than it, and each comparison
between two paintings was repeated four times over the session. After the initial
learning session, participants were given a test where they were told to consider the
placement of the following painting in the overall hierarchy. Then, one of the items
was shown alone on the screen as the participant thought about the price of that
item. The item was then removed from the screen, and the participant pressed a
button to indicate whether that painting was Average, More Expensive, or Less
Expensive compared to the group. The mappings between buttons and the state-
ments did not appear until after the presentation of the item being considered in
order to separate conclusions about the rank of that item from preparing a motor
response or perception of spatial information. Participants then completed the
Forced Choice Pairs task, where they were presented with two items, and asked to
press F if the painting on the left is more expensive or J if the painting on the right
is more expensive. This task compared every possible combination of items within
each content type, including items that were never learned together, and whose
relative prices could only have been deduced through transitive reasoning. Lastly,
participants were given a blank sheet of paper divided into three sections (one for
each of height, price, and vilchiness). Each list was numbered 1 through 5 and were
asked to write the names of the items in order from most to least (“Hierarchy
Reconstruction” task) for each of the three content types. Participants were pro-
vided with an item reference sheet that contained an alphabetized list of the items
(which did not correspond with rank order in any way).

MRI Scan Session Overview. The MRI scanning session lasted for 1 h including the
structural scans and had the same basic structure as training sessions. Participants
reviewed the transitive reasoning task during anatomical scans at the beginning of
the session. The hierarchy probe and pairwise comparison tasks were completed
during functional runs (Fig. 7), with the two runs for the hierarchy probe (for each
content type) occurring before the forced choice pairs task. During the scan ses-
sion, each content type’s hierarchy probe task was completed twice to maximize
data points of participants thinking about the relative rank of each item. The two
hierarchy probe and forced choice pair task were completed blocked by content
type to prevent unnecessary memory load from switching item types. The ordering
of the content blocks were counterbalanced between participants. The full hier-
archy was completed again on paper immediately after the completion of the
scanner study.

Experimental Design and Statistical Analysis
MRI Scanning parameters. The MRI session took place at the Dartmouth Brain
Imaging Center using a Phillips 3 T Achieva Intera with a 32 channel SENSE head

coil. For the functional runs, there were six (2[run]x[3 content type]) runs of 148
volumes per run for a total of 888 functional (T2*) volumes with a TR of 2.5 s. The
functional scans were collected using gradient-echo EPI with 42 Philips interleaved
transverse slices at 3 mm per slice (TE= 35, flip angle= 90 degrees).

Univariate Functional Imaging Analysis. This univariate analysis for the neural data
from the Hierarchy Probe task (see Fig. 7 for example using Height condition) was
conducted to obtain beta values for each item, used in the representational simi-
larity analysis (discussed below). Each run of neural data was preprocessed sepa-
rately with FSL tools for motion correction and registration (MCFLIRT38). Neural
data sets for each run of each participant were modeled using a canonical HRF was
used (6 s to peak) and were smoothed using a 5 mm FWHM Gaussian kernel.
Neural responses for each of the exemplars (two repeats per exemplar) were
modeled in a contrast against fixation baseline. The button response periods after
the stimulus presentation window were also modeled and used as a regressor of
non-interest. Each run for each participant was modeled separately. Because each
participant completed the Hierarchy Probe session twice per content type, the
GLM was initially analyzed using FSL FEAT on the level of the individual runs, and
a higher level GLM was conducted to obtain item-level betas across runs within the
same content type (e.g., to obtain the beta value for “Matthew”, a higher level GLM
was conducted to find the beta for “Matthew” across both Height Hierarchy Probe
runs). Beta values were obtained through the contrast between each exemplar item
and unmodeled baseline across both runs. In order to isolate neural data related to
the task from neural data related to responding, participants were not told the
mapping of buttons to responses at the start of the trial so motor responses could
not be prepared until after the analyzed portion of the trial. Regressor covariance
estimates generated by FSL (version 5.0) confirmed that these portions of the trial
were statistically separable due to the jittered fixation periods inserted in between
sections of each trial. Anatomical data for the searchlight portion of the analysis
were prepared using FreeSurfer39.

Representational similarity analysis. The following analyses were performed using
Python and PyMVPA40, SciPy, and NumPy. The searchlight-based representa-
tional similarity analysis (RSA) was conducted on the neural surface, using a 100
voxel searchlight mapping technique11 that produced a whole-brain map on the
group level (created using the average of the individual subjects untargeted neural
similarity for each content condition) that reflected the Pearson correlation
between local neural representational structure and a target similarity structure for
each of the content conditions (Height, Price, and Abstract; Fig. 2). Each modeled
dissimilarity matrix was created using the ordinal ranking of the objects, where the
tallest/most expensive/“vilchiest” object is one distance away from the second
object, two from the third object, and so on for all five items in each hierarchy. At
each searchlight location, the local neural dissimilarity matrix was computed using
correlation distance between activity patterns (derived from beta values in the
item-level GLM, described above) for all pairs of stimuli within that content type.
Activity patterns were defined by the voxel-wise estimated hemodynamic responses
from GLM analysis of the functional data collected during the two Hierarchy Probe
runs for each of the three content conditions (excluding the portion of the trial in
which a button response occurred). After all individual untargeted neural

5 seconds

Variable 5-20 s

Variable 5-20 s

Average       More Tall       Less Tall

1                    2                   3

5 seconds

Analyzed Portion of Trial

Fig. 7 An example of one of the fMRI session hierarchy probe trials for the Height condition. There was a variable length fixation period at the start of
the trial (inter-trial interval), then the participant then saw the picture of one of the items they had reasoned about in training. There was another variable
length fixation period, then participants were presented with a mapping of responses and button presses to respond. The mappings changed pseudo-
randomly on each trial so that participants could not prepare a button response earlier in the trial. Only the 5 s period where the participant was being
shown the item from the hierarchy and was considering its relative height was used in the imaging analysis. The fixation time was used as baseline for GLM
comparisons of items to baseline. The button response portion of each trial was modeled as a regressor of no interest and not analyzed further.
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dissimilarity matrices were calculated, a group average was calculated within each
content type. Each of these content-specific average neural maps were then cor-
related with the modeled dissimilarity matrices for item rankings within each
content type. The resulting correlations were permutation-corrected against a null
distribution of 10,000 randomized potential correlation maps, resulting in a cor-
rected Z-map for each content type (Fig. 3) indicating the likelihood that any
observed correlation was significantly different from chance. For further details,
please see the section on multiple comparison correction below.

These three content-specific maps were further used as input for the higher-
level Rank Average RSA analysis. In this analysis, we aimed to identify neural
regions that showed patterns of activity that matched the predicted structure for
the mental models across multiple content types. Through our generated
distributions from our permutation corrections (described in detail below), we
identified that the noise threshold was z > 1.37. Given we were testing our
hypothesis about a positive correlation between the theoretical mental model and
the pattern of neural activity, we set our cutoff for the threshold for minimum
values from each of the permutation-corrected content-specific maps as z > 1.65, a
one-tailed p < 0.05. In short, when the average rank z-map was calculated, only
permutation-corrected z values greater than 1.65 from each of the content-specific
RSAs were included. All other values were set to 0 to prevent averages being
artificially. The content-specific permutation-corrected z-maps that were
thresholded at z > 1.65 were averaged together to create one average map that
represented relative rank of items, across content types. We then used AFNI’s
surface-based cluster simulation to identify significant clusters on the surface
(clusters would be required to have an area greater than 120 mm2, at a bootstrap-
corrected threshold of p < 0.05, corrected).

After clusters were identified, we further verified that the clusters were not due
to an exceptionally high value from a single content specific map. To do so, we
identified that the maximum permutation-corrected z that was included in the
average was 4.1 Given the average map was calculated from three maps, an average
between 4.1 and two additional 0 s (non-significant values from the other two maps
were masked as 0) resulted in a z of 1.36. This maximum value is the highest
possible value that could have resulted from a single map contributing to a region
in the average map. The cluster in the right IPS, left IFC, and the left aPFC both
had peak and cluster-average z values higher than that cutoff, indicating that both
of those clusters could not have possibly been present due to the results from a
single content-specific map, and minimally indicate that multiple types of content
show the same pattern of activity in those regions.

Finally, to investigate which regions in the average RSA analysis represented
similar mental models in each of the three content types, we calculated a
conjunction map. Each of the original content-specific RSA maps were thresholded
z > 1.65, p < .05 (as with the average map above). Then, each content-specific map
was binarized, so that each node greater than the minimum threshold had a value
of 1 and all other nodes were 0. The three binarized maps were then multiplied by
different values and summed together. Different values were assigned to each map
so it would be clear which content types were overlapping in which regions (which
would be lost through simply binarizing the maps and summing).

Multiple comparison correction. We conducted a permutation test to compare
our predicted dissimilarity matrices and observed results to a distribution of
possible results based on a distribution of 10,000 random permutations of the
target labels. The probabilities associated with our results were thus calculated as
the z-scored likelihood of the actual r-values occurring by chance at a given node
compared to a distribution of possible outcomes created by shuffling the data
10,000 times. In order to examine the effects of rank across content types, we
averaged the permutation-corrected z-maps for each content type, thresholded
at z > 1.65, one-tailed p < 0.05. This average map for rank was further bootstrap
cluster corrected using AFNI’s 3dClustSim function for surface clusters significant
at p < 0.05 (120 mm2).

Statistics and reproducibility. The searchlight representational similarity analysis
z-maps for each content type (described in detail in the Representational Similarity
Analysis subsection above) were permutation-corrected for multiple comparisons
using distributions created from 10,000 random permutations of the actual data
(see Multiple Comparison Correction section above). From that permuted dis-
tribution of data, we identified that our noise threshold was z > 1.37. We selected a
more conservative threshold of z > 1.65 for inputs to our z-map averaged across all
content conditions, and we further corrected that average z-map with ANFI’s
surface-based cluster correction to identify clusters with an extent significant at
p < 0.05 (120 mm2). The same correction parameters were applied to the con-
junction analysis as well.

One condition of this study, the Height content condition, was included to
directly reproduce our prior results reported in Alfred et al. 10. We were able to
successfully replicate our prior results, indicating that the neural signal associated
with representation of a spatial mental model created through transitive reasoning
is reliably reflected in patterns of neural activity in the right IPS.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data will be made available upon request. Neural data are in the form of NIML surface
datasets. Behavioral data are in comma separated value files (Supplementary Data 1).
Requests can be made to the corresponding author.

Code availability
Custom code for the permutation corrections will be made available upon request.
Requests can be made to the corresponding author. All other analyses were conducted
using tools provided by FSL, FreeSurfer, PyMVPA, Numpy, and Scipy, as outlined in the
method section.
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